CHROM. 23 181

Reversed-phase high-performance liquid chromatographic study of the lipophilicity of a series of analogues of the antibiotic "calvatic acid"

ROSELLA CALVINO, ROBERTA FRUTTERO and ALBERTO GASCO*

Dipartimento di Scienza e Tecnologia del Farmaco, Corso Raffaello 31, 10125 Turin (Italy) (First received October 18th, 1990; revised manuscript received February 6th, 1991)

ABSTRACT

The lipophilicity of a series of para- and meta-substituted phenyl-ONN-azoxycyanides, analogues of the antibiotic 'calvatic acid', was studied by reversed-phase high-performance liquid chromatography using methanol-water or acetonitrile-water as the mobile phase and a LiChrospher 100 RP-18 column. An excellent linear relationship between the logarithm of the capacity factors (log k') for each compound and the volume fraction of the organic modifier (φ) was found. The extrapolation of $\log k'$ to $\varphi=0$ gives $\log k_w$ for every compound. From these values τ_w constants were calculated for each substituent. Good correlations were found between $\log k_w$ and $\log P_{\text{oct/H}_2O}$ and between τ_w and Hansch's π hydrophobic parameter.

INTRODUCTION

The cyano-NNO-azoxy group (ONN-azoxycyanide group) is an interesting function present in "calvatic acid" (1), an antibiotic produced by some Basidiomycetes [1,2]. This moiety is responsible for the antimicrobial properties of the antibiotic [3,4].

The ability of 1 to inhibit [³H]colchicine binding to rat liver soluble tubulin [2] prompted us to prepare and test for their potential antitumour properties several new derivatives bearing the cyano-NNO-azoxy group linked to different vectors [5].

In recent work we showed that the electronic and hydrophobic constants of this function are similar to those of the nitro group [6]. In this paper, in order to complete the physico-chemical characterization of the -N(O) = NCN group, we report the results of an investigation in which the aryl-ONN-azoxycyanides 2–19 and 24 and the heteroaryl-ONN-azoxycyanides 20–23, 25 and 26 were studied by reversed-phase high-performance liquid chromatography (RP-HPLC).

EXPERIMENTAL

Azoxycyanide derivatives 2–26 (Fig. 1) were synthesized and purified according to methods reported previously [5,6]. Methanol and acetonitrile were of analytical-reagent grade. The partition coefficients of the derivatives 20–26 were obtained using the shake-flask method at room temperature using octanol as lipid phase and water as

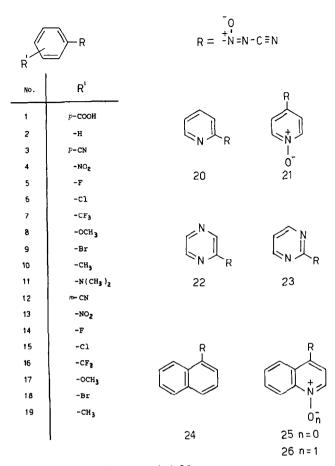


Fig. 1. Formulae of compounds 1-26.

hydrophilic phase. Each tabulated $\log P$ value is the average of four determinations made with different concentrations of solute $(10^{-3}-10^{-4} M)$ (Tables I and II). No concentration dependence of the partition coefficients was observed. Owing to the low p K_a of compound 11, no correction for partial ionization was taken into account.

Linear regression analyses were performed by the usual procedure on a IBM AT personal computer. Standard errors of the slope and intercept are reported in parentheses.

Chromatographic procedure

RP-HPLC experiments were performed on a Perkin-Elmer Series 2B liquid chromatograph equipped with a Perkin-Elmer LC75 variable-wavelength detector and a Rheodyne Model 7105 injection valve. A Perkin-Elmer LCI 100 integrator was used. A LiChrospher 100 RP-18 (10 μ m) column (250 \times 4.0 mm I.D.) (Merck) was employed.

Methanol-water or acetonitrile-water mixtures at various compositions (φ) were used as mobile phases.

The samples were dissolved in acetonitrile at concentrations suitable for UV detection and $1-5 \mu$ l of solution were injected into the chromatographic column. Each chromatographic run was repeated at least three times. Measurements of the retention times (t_R) were taken at room temperature.

The flow-rate was 1.5 ml/min and the column dead time (t_0) was determined according to the Knox and Kaliszan method [7]. From the solute retention time t_R , the logarithm of the capacity factor, log k', was calculated by the equation

$$\log k' = \log \left(\frac{t_{\rm R} - t_0}{t_0} \right) \tag{1}$$

RESULTS AND DISCUSSION

Retention parameters

Generally, the dependence of $\log k'$ on mobile phase composition is complex [8]. By using methanol-water mixtures as mobile phases and working with non-ionized solutes, the linear relationship between $\log k'$ and the volume fraction of organic modifier

$$\log k' = \log k_{\rm w} - a\varphi \tag{2}$$

where $k_{\rm w}$ is the capacity factor for pure water as a mobile phase and a is a constant, holds over the range $10 \le \varphi \le 80$ [9].

Log k' values for *meta*- and *para*-substituted phenyl-ONN-azoxycyanide and heteroaryl-ONN-azoxycyanide derivatives **2–26** measured at various methanol—water ratios (φ_{M}) are reported in Table I. The values in Table I show for each compound an excellent linear relationship with the φ_{M} values (see Table III) over the whole volume fraction range considered according to eqn. 2. From these correlations it was possible to extrapolate for each derivative the corresponding $\log k_{w(M)}$ value.

Similar results were obtained using acetonitrile—water mixtures ($20 \le \varphi \le 80$) as the mobile phase (see Tables II and III). As an example, Fig. 2 shows the plot of $\log k'$ vs. volume fraction for both methanol and acetonitrile for compound 5. For this series of derivatives, the $\log k_{\text{w(M)}}$ values are always greater than the corresponding $\log k_{\text{w(A)}}$ values. Log $k_{\text{w(M)}}$ is correlated with $\log k_{\text{w(A)}}$ according to the equation

$$\log k_{\mathbf{w}(\mathbf{M})} = -0.16(\pm 0.11) + 1.28(\pm 0.05)\log k_{\mathbf{w}(\mathbf{A})}$$

$$n = 25; s = 0.160; r = 0.980$$
(3)

Relationship between capacity factors and partition coefficients

Log k' values at various methanol-water and acetonitrile-water compositions correlate very well with log P values measured in the reference system n-octanol-water. The correlation coefficient r and the standard deviation s were spread over the ranges r = 0.969-0.996, s = 0.234-0.080 for the methanol-water system and r = 0.962-0.988, s = 0.227-0.112 for the acetonitrile-water system.

Log $k_{w(M)}$ and log $k_{w(A)}$ are strongly correlated to log P by means of the

TABLE I LOG k' VALUES WITH METHANOL-WATER MOBILE PHASES

Compound	Volume fraction of organic modifier, $\varphi_{(M)}$								
	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	
2		1.74	1.44	1.13	0.75	0.42	0.13	-0.22	
3	1.78	1.33	0.98	0.65	0.29	-0.04	-0.32	-0.71	
4		1.44	1.11	0.82	0.46	0.13	-0.15	-0.52	
5		1.66	1.35	1.05	0.69	0.34	0.05	-0.33	
6			1.74	1.40	0.97	0.60	0.29	-0.10	
7			1.86	1.49	1.06	0.68	0.24	-0.18	
8			1.74	1.40	0.97	0.57	0.26	-0.11	
9			1.86	1.50	1.08	0.67	0.35	-0.06	
10			1.87	1.52	1.08	0.68	0.36	-0.04	
11				1.68	1.11	0.69	0.37	-0.02	
12	1.86	1.36	1.00	0.65	0.33	0.01	-0.27	-0.62	
13		1.52	1.19	0.91	0.56	0.23	-0.07	-0.42	
14		1.74	1.42	1.14	0.78	0.43	0.13	-0.23	
15			1.79	1.48	1.06	0.69	0.35	-0.02	
16			1.89	1.54	1.10	0.67	0.30	-0.13	
17			1.75	1.43	1.00	0.61	0.28	-0.07	
18			1.92	1.58	1.15	0.75	0.40	0.02	
19			1.87	1.53	1.09	0.69	0.36	-0.02	
20	1.30	0.89	0.57	0.29	0.02	-0.22	-0.44	-0.70	
21	0.58	0.19	-0.11	-0.36	-0.66	-0.77	-1.01	-1.44	
22	0.76	0.42	0.16	-0.06	-0.27	-0.44	-0.66	-0.94	
23	0.63	0.31	0.06	-0.16	-0.35	-0.52	-0.71	-0.98	
24				1.83	1.33	0.86	0.48	0.06	
25			1.66	1.31	0.82	0.43	0.11	-0.24	
26		1.52	1.08	0.77	0.34	0.02	-0.24	-0.55	

Collander-type equations

$$\log P = -1.07(\pm 0.10) + 1.16(\pm 0.04)\log k_{\text{w(M)}}$$

$$n = 25; s = 0.146; r = 0.988$$
(4)

and

$$\log P = -2.06(\pm 0.33) + 1.82(\pm 0.14)\log k_{w(A)}$$

$$n = 25; s = 0.150; r = 0.952$$
(5)

Group contribution to hydrophobicity

From the log k_w values reported in Table III, it is possible to calculate the hydrophobic constants τ_w [10] (see Table IV) according to the equation

$$\tau_{\mathbf{w}} = \log(k_{\mathbf{w}j}/k_{\mathbf{w}}) \tag{6}$$

TABLE II		
LOG k' VALUES WITH	ACETONITRILE-WATER	MOBILE PHASES

Compound	Volume fraction of organic modifier, $\varphi_{(A)}$								
	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	
2		1.47	1.07	0.72	0.39	0.10	-0.16	-0.42	
3	1.63	1.23	0.88	0.56	0.24	-0.07	-0.34	-0.67	
4		1.40	1.03	0.69	0.35	0.03	-0.26	-0.59	
4 5		1.45	1.08	0.73	0.40	0.10	-0.17	-0.46	
6		1.83	1.39	0.97	0.61	0.28	0.01	-0.28	
7			1.58	1.11	0.68	0.32	0.01	-0.31	
8		1.75	1.25	0.83	0.47	0.16	-0.10	-0.38	
9			1.48	1.06	0.66	0.33	0.05	-0.23	
10		1.89	1.39	0.98	0.59	0.28	0.01	-0.26	
11		1.91	1.34	0.87	0.50	0.20	-0.06	-0.32	
12	1.59	1.23	0.85	0.52	0.22	-0.09	-0.37	-0.66	
13		1.44	1.02	0.66	0.34	0.02	-0.27	-0.57	
14		1.54	1.12	0.75	0.43	0.12	-0.15	-0.42	
15		1.90	1.41	0.98	0.62	0.29	0.02	-0.24	
16			1.55	1.07	0.67	0.31		-0.30	
17		1.80	1.28	0.87	0.52	0.20	-0.07	-0.34	
18			1.50	1.04	0.67	0.34	0.06	-0.20	
19		1.90	1.40	0.97	0.61	0.29	0.02	-0.24	
20	0.95	0.61	0.33	0.10	-0.13	-0.36	-0.59	-0.81	
21	0.41	0.06	-0.24	-0.48	-0.72	-0.98	-1.26	-1.43	
22	0.62	0.37	0.15	-0.05	-0.26	-0.47	-0.71	-0.96	
23	0.49	0.24	0.02	-0.17	-0.37	-0.58	-0.83	-1.07	
24			1.72	1.19	0.76	0.41	0.11	-0.16	
25		1.61	1.09	0.68	0.35	0.08	-0.17	-0.39	
26	1.64	1.07	0.63	0.27	-0.01	-0.25	-0.50	-0.69	

where $k_{\mathbf{w}}$ is the capacity factor for 100% water eluent of the parent azoxycyanide 2 and $k_{\mathbf{w}j}$ is that of substituted compound j.

As the methanol-water mobile phase is the best HPLC reference system for determining hydrophobic parameters [11], we investigated correlations between $\tau_{w(M)}$ and $\pi_{N(O)=NCN}$ derived from the phenylazoxycyanide system [6] according to the equation

$$\tau_{\text{w(M)}} = 0.13(\pm 0.03) + 0.85(\pm 0.06)\pi$$

$$n = 18; s = 0.124; r = 0.958$$
(7)

No improvement was obtained by treating *meta*- and *para*-substituted derivatives as separate series. Similar results (r = 0.950, s = 0.079) were obtained for the correlation between $\tau_{w(A)}$ and π values.

In a previous study [6] we found that the $\pi_{RC_6H_5-N(O)=NCN}$ scale derived from

TABLE III SLOPES AND LOG k_w VALVES IN EQN. 2 FOR AZOXYCYANIDES AND LOG P VALUES

Compound	Log P	Methanol			Acetonitrile		
		Log k _w	Slope	r	Log k _w	Slope	r
2	1.87	2.41 (±0.02)	$-3.29 (\pm 0.05)$	0.999	2.01 (±0.06)	-3.12 (+0.11)	0.997
3	1.18	$2.05 (\pm 0.03)$	$-3.47(\pm 0.07)$	0.999	$1.88(\pm 0.03)$	$-3.22(\pm 0.06)$	0.999
4	1.51	$2.10 \ (\pm 0.02)$	$-3.26 (\pm 0.04)$	0.999	$2.03 (\pm 0.03)$	$-3.30(\pm 0.05)$	0.999
5	1.80	$2.34 (\pm 0.02)$	-3.30(+0.04)	0.999	$2.03 (\pm 0.04)$	-3.17(+0.08)	0.998
6	2.33	$2.85(\pm 0.04)$	$-3.70(\pm 0.07)$	0.999	2.44 (+0.08)	-3.50(+0.15)	0.996
7	2.47	$3.10 \ (\pm 0.03)$	$-4.10 (\pm 0.05)$	0.999	$2.62 (\pm 0.09)$	-3.75(+0.16)	0.996
8	2.15	$2.86(\pm 0.04)$	$-3.74(\pm 0.08)$	0.999	$2.31(\pm 0.10)$	-3.48 (+0.19)	0.993
9	2.50	$3.02(\pm 0.04)$	-3.86(+0.06)	0.999	2.42 (+0.09)	-3.40 (+0.16)	0.999
10	2.39	3.03 (+0.04)	$-3.85(\pm 0.07)$	0.999	$2.47 (\pm 0.10)$	$-3.56 (\pm 0.18)$	0.993
11	2.30	3.24 (+0.16)	$-4.14(\pm 0.26)$	0.994	2.45 (+0.14)	-3.63 (+0.26)	0.987
12	1.15	$2.08(\pm 0.05)$	-3.43 (+0.11)	0.997	1.85 (+0.04)	$-3.19 (\pm 0.07)$	0.998
13	1.45	$2.15(\pm 0.02)$	$-3.21(\pm 0.03)$	0.999	2.03 (+0.05)	$-3.30 (\pm 0.09)$	0.998
14	1.85	$2.42(\pm 0.03)$	-3.28 (+0.05)	0.999	$2.10 (\pm 0.06)$	$-3.23 (\pm 0.12)$	0.997
15	2.40	$2.91(\pm 0.04)$	$-3.67 (\pm 0.06)$	0.999	$2.48 (\pm 0.10)$	-3.53 (+0.18)	0.993
16	2.52	$3.14 (\pm 0.04)$	-4.07 (+0.07)	0.999	2.57 (+0.10)	$-3.68 (\pm 0.17)$	0.996
17	2.24	$2.86 (\pm 0.04)$	$-3.69 (\pm 0.07)$	0.999	$2.36 (\pm 0.10)$	$-3.49 (\pm 0.19)$	0.992
18	2.56	$3.08 (\pm 0.03)$	$-3.83 (\pm 0.06)$	0.999	$2.42 (\pm 0.10)$	$-3.37 (\pm 0.18)$	0.995
19	2.49	$3.02 (\pm 0.04)$	$-3.81 (\pm 0.07)$	0.999	$2.47 (\pm 0.10)$	$-3.54 (\pm 0.20)$	0.992
20	0.53	$1.45 (\pm 0.06)$	$-2.77 (\pm 0.11)$	0.995	1.12 (+0.04)	-2.46 (+0.07)	0.997
21	-0.41	$0.75 (\pm 0.06)$	-2.66 (+0.13)	0.993	$0.60 (\pm 0.04)$	$-2.62 (\pm 0.07)$	0.997
22	0.10	0.90 (+0.04)	$-2.30 (\pm 0.08)$	0.996	$0.83 (\pm 0.01)$	$-2.20 (\pm 0.03)$	0.999
23	-0.13	$0.77 (\pm 0.04)$	$-2.18 (\pm 0.08)$	0.996	$0.70 (\pm 0.02)$	$-2.18 (\pm 0.04)$	0.998
24	3.17	$3.54 (\pm 0.08)$	$-4.38 (\pm 0.13)$	0.999	$2.71 (\pm 0.14)$	$-3.71 (\pm 0.24)$	0.992
25	2.07	$2.80 (\pm 0.08)$	$-3.86 (\pm 0.13)$	0.998	$2.10 (\pm 0.14)$ $2.10 (\pm 0.12)$	$-3.26 (\pm 0.23)$	0.988
26	1.12	$2.14 (\pm 0.06)$	-3.44 (+0.12)	0.997	1.72 (+0.12)	$-3.23 (\pm 0.23)$ $-3.23 (\pm 0.24)$	0.984

substituted phenyl-ONN-azoxycyanides and the $\pi_{RC_6H_5NO_2}$ scale derived from substituted nitrobenzenes [12] are strongly correlated by the equation

$$\pi_{\text{RC}_6\text{H}_5\text{N}(\text{O}) = \text{NCN}} = -0.02(\pm 0.02) + 0.96(\pm 0.03)\pi_{\text{RC}_6\text{H}_5\text{NO}_2}$$
(8)
$$n = 18; \ s = 0.06; \ r = 0.991$$

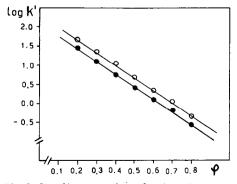


Fig. 2. Log k' versus volume fraction ($\bigcirc = \varphi_M$; $\bullet = \varphi_A$) for compound 5.

TABLE IV
HYDROPHOBIC SUBSTITUENT CONSTANTS, τ_{w} , DERIVED FROM TABLE III

Compound	Methanol–water: $\tau_{w(M)}$	Acetonitrile-water: $\tau_{w(A)}$	π	
2	0	0	0	
3	-0.36	-0.13	-0.69	
4	-0.31	0.02	-0.36	
5	-0.07	0.02	-0.07	
6	0.44	0.43	0.46	
7	0.69	0.61	0.60	
8	0.45	0.30	0.28	
9	0.61	0.41	0.63	
10	0.62	0.46	0.52	
11	0.83	0.44	0.43	
12	-0.33	-0.16	-0.72	
13	-0.26	0.02	-0.42	
14	-0.01	0.09	-0.02	
15	0.50	0.47	0.52	
16	0.73	0.56	0.65	
17	0.45	0.35	0.37	
18	0.67	0.41	0.69	
19	0.61	0.46	0.62	

This means that it is possible to derive, from the equations discussed above, retention parameters for azoxycyanide derivatives from lipophilicity parameters for the corresponding nitrobenzenes.

REFERENCES

- 1 A. Gasco, A. Serafino, V. Mortarini, E. Menziani, M. A. Bianco and J. C. Scurti, *Tetrahedron Lett.*, (1974) 3431.
- 2 R. Calvino, R. Fruttero, A. Gasco, A. Miglietta and L. Gabriel, J. Antibiot., 39 (1986) 864, and references cited therein.
- 3 V. Mortarini, G. Ruà, A. Gasco, M. A. Bianco and A. Sanfilippo, Eur. J. Med. Chem., 12 (1977) 59.
- 4 R. Fruttero, C. Tironi and R. Calvino, Pharmazie, 43 (1988) 551.
- 5 R. Fruttero, R. Calvino, A. Di Stilo, A. Gasco, I. Galatulas and R. Bossa, *Pharmazie*, 43 (1988) 499 (this paper contains omissions; the compounds reported in Table 1 have progressive numbers from 8 to 13).
- 6 R. Calvino, R. Fruttero, A. Garrone and A. Gasco, Quant. Struct.—Act. Relat., 7 (1988) 26, and references cited therein.
- 7 J. H. Knox and R. Kaliszan, J. Chromatogr., 349 (1985) 211.
- 8 R. Kaliszan, Quantitative Structure-Chromatographic Retention Relationships, Wiley, New York, 1987.
- 9 N. El Tayar, H. van de Waterbeemd and B. Testa, J. Chromatogr., 320 (1985) 293.
- 10 C. M. Riley, E. Tomlinson and T. M. Jefferies, J. Chromatogr., 185 (1979) 197.
- 11 Th. Braumann, J. Chromatogr., 373 (1986) 191.
- 12 T. Fujita, J. Iawasa and C. Hansch, J. Am. Chem. Soc., 86 (1964) 5175.